Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324657

RESUMO

Nonsteady-state behaviors are not expected in electric circuits that lack significant capacitance, inductivity, and/or active feedback. Here, we report that electrophoresis on paper─used, e.g., to electrophoretically driven lateral-flow immunoassays (LFIA)─can create a nonsteady-state electric circuit. We studied electrophoresis on 50 × 4 mm nitrocellulose membrane strips utilized in LFIA. The voltage was applied to strip termini immersed in reservoirs with a running buffer. If the electric power of this circuit exceeded approximately 0.5 W, neither the electric current nor the temperature map reached their steady states on a multiminute time scale. The current grew slowly to its maximum and then slowly decreased. The temperature map evolved slowly, with one or more hot spots appearing and disappearing gradually in different positions on the strip. The slow evolution of a temperature map led to the occurrence of a terminal hot spot in which the strip burned. No chaotic behavior was observed, i.e., time dependences of both the current and temperature map were reproducible. We analyzed major processes involved in paper-based electrophoresis and explained the nonsteady-state behavior. Unlike ordinary electric circuits with metal conductors, paper-based electrophoresis involves two slow processes: (i) intense buffer evaporation from hot spots and (ii) buffer supply from the reservoirs by an interplay of the capillary penetration and the electroosmotic flow. These processes affect heat generation and/or dissipation on the strip and, accordingly, the resistivity profile. The slow evolution of the resistivity profile is responsible for the nonsteady-state behavior. The results of our computer modeling support this explanation. The hot spots may have a destructive effect on electrophoretically driven LFIA. To avoid denaturation of immunoreagents, experimentalists should empirically confirm that spatiotemporal temperature maps are compatible with the developed assay.

2.
ACS Sens ; 8(4): 1792-1798, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36988204

RESUMO

Serological assays detect the presence of specific antibodies in blood. There are urgent and important applications for serological point-of-care (POC) assays. However, available detection methods are either insufficiently sensitive or too complex for POC settings. Here, we demonstrate that lateral flow immunoassay (LFIA), which is arguably the simplest universal molecular detection approach, can serve as a methodological platform for highly sensitive serological POC assays if combined with a simple, fast, and inexpensive electrophoretic step. In this work, we compared such electrophoretically driven LFIA (eLFIA) with conventional LFIA for the detection of immunoglobulins G against hepatitis B and C in serum. The limit of detection of eLFIA was proven to be 1000 times lower than that of conventional LFIA and sufficiently low to support clinical serological tests. eLFIA takes less than 10 min, requires only a minor accessory powered by a small 9 V battery, and can be performed by an untrained person in the POC environment using a 3 µL specimen of finger-prick capillary blood.


Assuntos
Imunoglobulina G , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Limite de Detecção , Imunoensaio/métodos , Testes Sorológicos
3.
Angew Chem Int Ed Engl ; 62(2): e202215548, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36357330

RESUMO

Lateral flow immunoassay (LFIA) is a rapid, simple, and inexpensive point-of-need method. A major limitation of LFIA is a high limit of detection (LOD), which impacts its diagnostic sensitivity. To overcome this limitation, we introduce a signal-enhancement procedure that is performed after completing LFIA and involves controllably moving biotin- and streptavidin-functionalized gold nanoparticles by electrophoresis. The nanoparticles link to immunocomplexes forming multilayer aggregates on the test strip, thus, enhancing the signal. Here, we demonstrate lowering the LOD of hepatitis B surface antigen from approximately 8 to 0.12 ng mL-1 , making it clinically acceptable. Testing 118 clinical samples for hepatitis B showed that signal enhancement increased the diagnostic sensitivity of LFIA from 73 % to 98 % while not affecting its 95 % specificity. Electrophoresis-driven enhancement of LFIA is universal (antigen-independent), takes two minutes, and can be performed by an untrained person.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Limite de Detecção , Biotina , Imunoensaio/métodos
4.
Anal Chem ; 94(44): 15415-15422, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36301587

RESUMO

Large molecules can be generically separated from small ones, though partially and temporarily, in a pressure-driven flow inside a capillary. This transient incomplete separation has been only applied to species with diffusion coefficients different by at least an order of magnitude. Here, we demonstrate, for the first time, the analytical utility of transient incomplete separation for species with close diffusion coefficients. First, we prove in silico that even a small difference in diffusivity can lead to detectable transient incomplete separation of species. Second, we use computer simulation to prove that such a separation can be used for the reliable determination of equilibrium dissociation constant (Kd) of complexes composed of similar-sized molecules. Finally, we demonstrate experimentally the use of this separation for the accurate determination of Kd value for a protein-aptamer complex. We conclude that "accurate constant via transient incomplete separation" (ACTIS) can serve as a reference method for affinity characterization of protein-aptamer binding in solution.


Assuntos
Eletroforese Capilar , Oligonucleotídeos , Eletroforese Capilar/métodos , Simulação por Computador , Ligação Proteica , Oligonucleotídeos/química , Entropia
5.
Anal Chem ; 94(27): 9519-9524, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35767324

RESUMO

Molecular stream separation (MSS) is a promising complement for continuous-flow synthesis. MSS is driven by forces exerted on molecules by a field applied at an angle to the stream-carrying flow. MSS has only been performed with a 90° field-to-flow angle because of a rectangular geometry of canonic MSS; the second-order rotational symmetry of a rectangle prevents any other angle. Here, we propose a noncanonic circular geometry for MSS, which better aligns with the polar nature of MSS and allows changing the field-to-flow. We conducted in silico and experimental studies of circular geometry for continuous-flow electrophoresis (CFE, an MSS method). We proved two advantages of circular CFE over its rectangular counterpart. First, circular CFE can support better flow and electric-field uniformity than rectangular CFE. Second, the nonorthogonal field-to-flow orientation, achievable in circular CFE, can result in a higher stream resolution than the orthogonal one. Considering that circular CFE devices are not more complex in fabrication than rectangular ones, we foresee that circular CFE will serve as a new standard and a testbed for the investigation and creation of new CFE modalities.


Assuntos
Eletricidade , Rios , Eletroforese/métodos , Matemática
6.
Anal Chem ; 93(34): 11654-11659, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34410698

RESUMO

Accurate Constant via Transient Incomplete Separation (ACTIS) is a new method for finding the equilibrium dissociation constant Kd of a protein-small molecule complex based on transient incomplete separation of the complex from the unbound small molecule in a capillary. This separation is caused by differential transverse diffusion of the complex and the small molecule in a pressure-driven flow. The advection-diffusion processes underlying ACTIS can be described by a system of partial differential equations allowing for a virtual ACTIS instrument to be built and ACTIS to be studied in silico. The previous in silico studies show that large variations in the fluidic system geometry do not affect the accuracy of Kd determination, thus, proving that ACTIS is conceptually accurate. The conceptual accuracy does not preclude, however, instrumental inaccuracy caused by run-to-run signal drifts. Here we report on assembling a physical ACTIS instrument with a fluidic system that mimics the virtual one and proving the absence of signal drifts. Furthermore, we confirmed method ruggedness by assembling a second ACTIS instrument and comparing the results of experiments performed with both instruments in parallel. Despite some unintentional differences between the instruments (caused by tolerances in sizes, positions, etc.) and noticeable differences in their respective separagrams, we found that the Kd values determined for identical samples with these instruments were equal. Conclusively, the fluidic system presented here can serve as a template for reliable ACTIS instrumentation.


Assuntos
Entropia
7.
Anal Chem ; 93(29): 9980-9985, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34255479

RESUMO

In molecular-stream separation (MSS), a stream of a multicomponent mixture is separated into multiple streams of individual components. Quantitative evaluation of MSS data has been a bottleneck in MSS for decades as there was no conventional way to present the data in a reproducible and uniform fashion. The roots of the problem were in the multidimensional nature of MSS data; even in the ideal case of steady-state separation, the data is three-dimensional: intensity and two spatial coordinates. We recently found a way to reduce the dimensionality via presenting the MSS data in a polar coordinate system and convoluting the data via integration of intensity along the radius axis. The result of this convolution is an angulagram, a simple 2D plot presenting integrated intensity vs angle. Not only does an angulagram simplify the visual assessment, but it also allows the determination of three quantitative parameters characterizing the quality of MSS: stream width, stream linearity, and stream deflection. Reliably converting an MSS image into an angulagram and accurately determining the stream parameters requires an advanced and user-friendly software tool. In this technical note, we introduce such a tool: the open-source software Topino available at https://github.com/Schallaven/topino. Topino is a stand-alone program with a modern graphical user interface that allows processing an MSS image in a fast (<2 min) and straightforward way. The robustness and ruggedness of Topino were confirmed by comparing the results obtained by three users. Topino removes the analytical bottleneck in MSS and will be an indispensable tool for MSS users with varying levels of experience.


Assuntos
Software , Humanos
8.
Anal Chem ; 92(4): 2907-2910, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31986876

RESUMO

Continuous-flow electrophoresis (CFE) separates a stream of a multicomponent mixture into multiple streams of individual components inside a thin rectangular chamber. CFE will be able to benefit flow chemistry when it is both compatible with nonaqueous solvents utilized in organic synthesis and capable of generically detecting streams of small organic molecules. While stable nonaqueous CFE has been demonstrated, generically detecting molecular streams has not been achieved yet. Here we propose a general approach for molecular stream visualization in CFE via analyte-caused obstruction of excitation of a fluorescent layer underneath the separation chamber-fluorescent sublayer-based visualization (FSV). The concept of FSC-based visualization has been adapted from visualization of small organic molecules on fluorescent plates in thin-layer chromatography. We designed and fabricated a CFE device with one side made of quartz and another side made of UV-absorbing visibly fluorescent, chemically inert, machinable plastic. This device was demonstrated to support nonaqueous CFE of small organic molecules and quantitative detection of their streams in real-time with a limit of detection below 100 µM. Thus, CFE may satisfy conditions required for its seamless integration with continuous flow organic synthesis in flow chemistry.

9.
Lab Chip ; 19(13): 2156-2160, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31161184

RESUMO

We introduce non-aqueous continuous-flow electrophoresis (NACFE) in which the electrolyte is a solution of an organic salt in an aprotic organic solvent. NACFE can maintain steady-state separation of multiple hydrophobic organic species into individual molecular streams. It is a potential separation complement for continuous-flow organic synthesis. This proof-of-concept work will serve as a justification for efforts towards making NACFE a practical tool in flow chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...